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We pose the problem of constructing the optimal control for a process described by a non- 
linear equation of the name form as the heat conduction equation. On the basis of the theory 
developed by Ovmiannikov [l] we find transformation groups which enable us to reduce the 
oyatem of partial differential eqnatione of the problem to a system of ordinary differential 
equations. Several typelr of boundary conditions formulated to conform to the rermlting 
tranlrfonuatfonn are considered. 

1. Formulation of the problem. Let the controlled process be described by the 
equation in dimensionless variables 

where cp (t, x) is the required dbt tribution, f (9) is some nonlinear function whose form will 

be determined later, u is a constant, and II (t, x) is the distributed control 

t E [O,Tl, x E IO,fl 

An equation of the form of (1.1) describes heating processes, processes in chemical 
reactors, etc. 

Let us find the control u (c. x) which minimizes the functional 

T 1 

J, = 
ss 

’ Quzdxdt 

0 0 

(1.2) 

where Q, T, and 1 are known positive constants. The boundary conditions for Eq. (1.1) 
will be formulated below in conformance to the resulting transformations. We shall then 
attempt to find transformation groups which will enable na to find group-invariant soln- 
tions of unit rank. 

It is convenient to represent Eq. (1.1) in the form of the system 

acp *+acp-aLEo, ST- ax w-i (cpg=o (1.3) 

In order to solve the variational problem we makeuse of the Lagrange formalism which 
yields the nece.asary conditions for the extremum of (1.2) in the form of Ostrogradskii equa- 
tione, 

II (t, 2) a - I2 (t, r) df aq dpY&y + ; [J”2 (t, 4 f (@I - 2 = 0 (1.4) 

h2+Jg=o, 2Qu--aahl=O (1.5) 
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From Eqs. (1.5) we find that the Lagrange multipliers are given by 

hlC24 u 
a ’ 

hp= -2Q!% 
a ax 

Eq. (1.4) becomes 

i+ +f(cp)g2-au=0 
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(1.6) 

The equations of the variational problem can now be written as 

(S) k =wX--c9+ao, (p3c = w [I (cp)l-’ (1.7) 

ur=au-_((cp)v,, uX=v (1.8) 

2. Construction OP the basic group G. A system of equations (S) includes 
the four required functions cp, u, to, u of the two independent variables x and t. The total- 
ity of the dependent and independent quantities can be regarded as the collection of co- 
ordinates of a point in the space El. 

The transformation group C is defined by a Lie algebra of infinitesimal operators, 

where %t, %x9 %07 %,, Ew, %, are the coordinates of the operator Y which are functions 
of the coordinates of the space El. 

We now introduce the space E,, which is an extension of the space El. A point in 
E I, is defined by the coordinates 

t, 59 99 h, w, u, ‘Pt, ‘Pr, of, UX, Wtr t,, xl, vs 

Next, we introduce the group G+, which is the first extension of the tranefonnation 
group G. The group G* is isomorphic to G. The operator of the group G+ is given by 
Exuression (2.2) 

The group G is basic to (S) if and only if the invariance conditions [1] 

Y* [Y] = 0 (2.3) 

where \y is a manifold defined by (s), are fulfilled in E,,. Conditions (2.3) then become 

(2.4) 

The expressions for the coordinates of the extended operator in terms of the coordinates 
of the operator Y and the coordinates of the space E,, can be obtained as described in [l]; 
for example, 

The expressions for the remaining coordinates can be written out in the same way. 
The invariance conditions enable us to obtain the system of defining equations of the 

Lie algebra. The unhnown functions in this system are the coordinates of the operator Y; 
the independent variables are t, x, q, u, w, u. 
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Study of the defining equstionm for the coordfnateo of infinfts&nd operator (2.1) yields the 
folIowing ml8tionu 

(2.6) 

(2.71 

P-8) 

a&-f ( ae, a<, 1 at, @u d4,+ % 
x+71= --at-auK+au dt. vi)t=O (2.9) 

Hers and below the prime denotes differentiation with renpect to cp. Moreover, 

Et = %1(& E, = %, (4 4, EIP = %‘p (4 29 VP) 
Eu = 5, (6 5, 4. Et0 = %I0 (f, 2, cp, 4, 5, = f, (h S? u> 4 

We caa now use the resulting ralationa (2.S)~2.9) to investigate the group properties 
of eystsm fs) for certain typea of linear fanctions f (rp) aad boundary oonditione. 

A. Let us consider the easa of determining the basic group for an arbitrary function 
f (4). Since fa does not depend on 4 and w, (2.7) implies the relations 

dct RX a<, aafs as% 
-=1:. X-=X--= dx 

------?E.=O 
8x2 - 3x3 

Eq. (2.9) in l mtisfled identically. Here the coordinates tt ad & of the operator are 
the defining comtanta, and %G = %, = %, = %, = 0. Hence, the baaia of the Lie 
algsbm of the baaio group of myatsm (3 con&s of the operators 

a 6 
Y1=z Ys=yg 

The ropresentdrem of the chines of similar subalgebras of unit order are then of the 
form [II 

<Y*>, wi + KY,> j2.40) 

where 1y is auy real number. There damwm are l maociated with the subgroups H, and 
H, of tbr basis group C. 

B. The tmnafmation group G OUI be extended by meuu of a upecial form of the 
function f (9). It ia clear from (2.7) that &, doea not depend on w and JP for 

/ (cp) = clcprm or f (@ = C,ew (2.11) 

where C,, C,, no and II am arbitrary cmataata. aad 

4, ag pg, a$ 
dr=az= aa3 at -=---_O 

lo tbia u-0 &I mordin8teB of rho iafiaite8iiaeI operator Y are 

tot = &et %, = %,e + %rzx, T$+ = m-I%,& Et8 =; m’f;~iU (2.12) 

%, (m + i)m-l%,rw, E, = (1 - m)m+frlv 
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The defining COnStEllt8 sre Era, &o, &I. 
The representatfves of the &ssas of similar enba~gebr88 of unit order are now 

(Yz>r (YI + KlYz)r (K2Yl + Y,> 
a a 

yl L=- 
-- 

at ’ yz- ax 
a qla ua m+4 _- -- Ya=qg+ m acp + m au -l-nw 

(2.13) 

Here K, end 4 are arbitrary real numbers. 
These c~aeses 8re 888ocf8ted with the subgroups HI’, Hr., Hs of the basic group G. 

3. ~roa~in~ariant solutions of system f&. A complete collection of 
functionally independent invariants lj (j = 1, 2, . . . . 5) can be found for each subgroup. 

If the manifold defined by the equations Cp =‘p (8, & u = u (2, t), w = w (z, f), 
8 = u (5, f),, is nonsingdar, i.e. if the rank of the matrix of the coordinates of the in- 
finitesimal operator8 at the points of the manifold ie not smaller then the total rank of this 
q atrfx, then the manifold is defined by the sy8tem of eqaations 

rD8 (I,, I,, .*.) = 0 (fi = 1, . ..( 4) 

Taking any invariant 1. ns our new independent variable, we can find the relations 
Ik (Ij) Jk # j). Solving th68e for ‘p, u, w, v and substituting theee into (s), we obtain a 
system of ordinary differential equations which we denote by S/Ht(i il 1, 2, 3). 

iet us now consider the gronpinvarfant solutions for Cases A and 8. We have shown 
that each transformation subgroup Hi must be matched by boundary conditions of a certain 
type which cannot be forainlated nnttf the t~8fo~ation ha8 been determined. 

A”. The complete collection of functionally independent invarfaats for a representative 
of the class (Ye> is of the form 

II=& I+J=cP(r), Is = u(f) 

The system S/H1 can be written as 

(3.1) 

The resulting transformation subgroup can be used’if the boundary condftions fb: the 
initial problem are specified (for example) in the form 

cp (89 0) = ‘PO, u 6x7 0) = uot qJ (xt T) = ‘Pr 

Here q)po, UQt 9, are constants. The equation ‘p (8, 2’) = [p, serves to dcffns the 
instant y of termination of the controlled proce88. 

The snbgronp 88 with the operator Y, + KY, is a88ociated with the invarfantcr 

zI=s- kG Iz = 9 (2, & J, = u (8, f), r, = w (2, t), II, = P (5, 1) 

The Sy8tem S/HI is of the form 

(3.2) 

By eliminating Z, and I, we reduce system (3.2) to 

dv!# 1 --- 
dl? - t (Is) C al& a (12 - 18) - dr, d~+k)], %=A (Ic$- +aIs) (3.3) 

In thi8 c88e the boundary conditions can be formulated as 
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We can determine the instant of termination of the process from the condition 

cp (0, Z) = ‘pr 

B”. This variant differs from A’ in that it involves the operator 

a a 
kaYl-I_Ys=ka at+“=+ 

The collection of functionally 
relations 

independent invariants is given in this case by the 

za=(Pexp -j& z3=u ex*z 
I4 = w exp 

-((m+i)r 
Zj = vexp 

-((1-ru)t 

rnks ( mh 

The aystem S/H, can be reduced to 

mkdz 
2m d”‘, 

m = I, (1 + amkz) - amkzla - ml *- 2mak&~m-1 
1 dll 

d”Zs dZs 
mkslZzam m = IS (amkz - 1) + mZ1 x 

dlz 
I4 = c1132m x, 

dls 
It5 =yjiy- 

Among the boundary conditions suitable in this case are those of the (3.4) type. 
The optimal control in the above cases is constructed after the appropriate invariants 

have been determined. 
Because the coordinates 51, ia, &,, E, d o not depend on the ancillary variables w 

and v, we can write out a ‘truncatedi operator which refers to transformations in the space 
t, z, U, ‘p. We then consider the equations of the variational problem in the form (l.l), 
(1.6). 

It was not our intention in the present paper to analyze the relationship betwaen the 
bonndary conditions of the problem with the transformation groups. We have merely establiehed 
that each transformation group must be matched with boundary conditions of a certain type. 
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